Data Sheet | Force Transducer Series DR

Threaded version
1.25 kN - 1.25 MN

Flange version
50 kN - 2.5 MN

Applications | Key Facts

Dynamic force applications: materials testing | component and structural testing | industrial quality and process control

- Dynamic tensile and compressive forces
- Flat, robust design | low mass and very high resonance frequency
- Accuracy class: 0.03-0.06
- Permissible oscillation stress 100%
- Force transmission via flange or thread
- Standard variants or configurable variants for maximum flexibility

Options | Accessories

- Optionally with 2 integrated MEMS acceleration sensors
- Optional second axial measuring circuit for redundancy
- Extensive electrical connection options
- Extensive mechanical accessories | Special solutions (on request)
- Bending moment measuring circuits Mx, My (on request)
- UNF connection threads (on request)
- With additional plug protection (on request)
- Special versions also in small quantities (on request)

Technical Data | Threaded Version | 1.25-1.25 MN

	Nominal force compression/tension	$\pm F_{\text {nom }}$	kN	1.25	2.5	5	12.5	25	50	125	250	500
	Accuracy class				0.03		0.04					0.06
	Linearity error	$d_{l i n}$	\%		0.03		0.04					0.06
	Hysteresis	h	\%		0.03		0.04			0.05		0.06
	Repeatability (f.s.)		\%		0.025							
	Zero error	f_{0}	\%		0.01							
	Creep		\%		0.025							
	Temperature effect on characteristic value per 10 K	$T K_{C}$	\%/10 K		0.015							
$\begin{aligned} & \pi \\ & 0 \\ & 0 \end{aligned}$	Temperature effect on zero signal per 10 K	$T K_{0}$	\%/10 K		0.015							
.	Eccentricity effect		\%/mm		<0.01							
$\begin{aligned} & 00 \\ & 0 \\ & \hline 0 \end{aligned}$	Bending moment effect		\%/N•m		<0.01							
$\frac{2}{2}$	Characteristic value difference, tension/compression force	$d_{Z D}$	\%		0.1							
	Rated characteristic value	$C_{\text {nom }}$	mV / V		1		2					
	Characteristic value tolerance	d_{c}	\%		0.25							
	Zero signal deviation	$d_{S, 0}$	\%		1							
$$	Input resistance	R_{e}	Ω		350							
	Output resistance	R_{a}	Ω		280-360							
	Insulation resistance	$R_{\text {is }}$	Ω		$>10^{9}$							
-	Operating range of excitation voltage	$B_{U, G}$	V		0.5-12							
-	Protection (DIN EN 60529)				67							

Technical Data | Threaded Version | 1.25-1.25 MN

	Nominal forcecompression/tension	$\pm F_{\text {nom }}$	kN	1.25	2.5	5	12.5	25	50	125	250	500
	Rated Displacement	$S_{\text {nom }}$	mm	0.02			0.03			0.04	0.05	0.06
	Spring rigidity	$c_{a x}$	kN/mm	62.5	125	250	415	830	1650	3125	5000	8300
\bigcirc	Mass	m	kg	0.5		1.3			5		11	28
\bigcirc	Proportionate moving mass	$m_{\text {mess }}$	kg	0.09			0.25		1.1		3.3	6.3
$\frac{5}{0}$	Fundamental resonant frequency	f_{G}	kHz	4.5	5.9	9.3	6.6	9.2	6.5	8.1	6.6	6.1
\pm	Permissible oscillation stress		\%	100								
	Force limit		\%	230								
	Breaking force		\%	>400								
	Lateral force limit		\%	100								
	Permissible eccentricity	e_{G}	mm	25							20	
¢	Bending moment limit	$M_{\text {bzul }}$	$N \cdot m$	40	80	140	330	635	1750	4500	9000	20000
	Rated temperature range	$B_{T, n o m}$	${ }^{\circ} \mathrm{C}$	$-10-+45$								
	Operating temperature range	$B_{T, G}$	${ }^{\circ} \mathrm{C}$	$-30-+85$								

Technical Data | Flange Version | 50 kN - 2.5 MN

Technical Data | Flange Version | 50 kN - 2.5 MN

Cable Connection | All Variants

cable connector: - appliance inlet:

Connection	Wire color	Pin	
Supply voltage (+)	$\mathrm{U}_{\text {in+ }}$	blue	A
Supply voltage (-)	$\mathrm{U}_{\text {in- }}$	black	D
Measurement signal (+)	$\mathrm{U}_{\text {out+ }}$	white	B
Measurement signal (-)	$\mathrm{U}_{\text {out- }}$	red	C
Sense (+)	Sense+	green	F
Sense (-)	Sense-	grey	E
Shielding			Housing

1) View too weldingside
2) Female Amphenol typ: MIL-C-26482 series 1 ; bayonet catch

Pluggable cable connection

- Suitable measuring cable: S-CAB-SMC-B-5M-F or C-CAB-...

Double Measuring Bridge | $\mathbf{~} \mathbf{2 . 5} \mathbf{~ k N}$

In the version with double measuring bridge (available as configurable variant), a second metrological equivalent signal is led out via an additional connector. The technical data for both measuring circuits apply equally.

- Standard force transducer series DR

Single measuring bridge $\mid 1 \times$ bayonet connection | threaded version

- Configurable force transducer series DR

Single measuring bridge $\mid 2 \times$ MEMS
accelerometers $\mid 2 \times$ bayonet connection | threaded version

- Configurable force transducer series DR

Single measuring bridge $\mid 2 \times$ MEMS
accelerometers $\mid 3 \times$ bayonet connection | threaded version

Cable Connection | MEMS Acceleration Sensor

1) View too weldingside
2) Female Amphenol typ: MIL-C-26482 series 1 ; bayonet catch

Pluggable cable connection | suitable measuring cable: S-CAB-SMC-B-5M-F

Technical Data | MEMS Acceleration Sensor

Typ		1	II
Rated acceleration	g	19	50
Rated sensitivity at 5 V	mV / g	57 ± 10	40 ± 2 (ratiometric)
Static output voltage at 0 g	V_{DC}	1.5 ± 0.25	2.5 ± 0.25
Typical bandwidth	kHz	1.6	11
Excitation voltage	$\mathrm{V}_{\text {DC }}$	(5 ± 0.25)	
Linearity error	\%	0.3	0.1
Resonant frequency	kHz	5.5	21

Dimensions | Threaded Version | 1.25 - 1.25 kN

Nominal force compression/tension	$\pm F_{\text {nom }}$	kN	1.25	2.5	5	12.5	25	50	125	250	500
Bore	$\emptyset B_{1}$	mm	7.1					10.4		13.5	16.8
Thread	$\emptyset T_{1}$	mm	M16x2-4H					M $33 \times 2-4 \mathrm{H}$		$\mathrm{M} 42 \times 2-4 \mathrm{H}$	M $72 \times 2-4 \mathrm{H}$
Diameter	$\varnothing D_{1}$	mm	104.8-0.1					153.9-0.1		203,2-0.1	279-0.1
Diameter	$\emptyset D_{2}$	mm	101.6+0.1					149+0.1		198.1+0.1	269.2+0.1
Diameter	$\varnothing D_{3}$	mm	79.2-0.1					115-0.1		146-0.1	188-0.1
Diameter	$\emptyset D_{4}$	mm	74.7+0.1					108+0.1		$138.9+0.1$	172.1+0.1
Diameter	$\varnothing D_{5}$	mm	34+0.1					61.2-0.1	67.3-0.1	95.2-0.1	122.2-0.1
Diameter	$\varnothing D_{6}$	mm	$16.5 \mathrm{H8}$					$33.5 \mathrm{H8}$		43н8	73н8
Pitch circle diameter	$\emptyset P_{1}$	mm	88.9 ± 0.1					130.3 ± 0.1		165.1 ± 0.1	229 ± 0.1
Height	H_{1}	mm	34.9-0.1					44.5-0.1		63.5-0.1	88.9-0.1
Height	H_{2}	mm	3.2					3.1		6.3	12.7
Height	H_{3}	mm	15.9					20.7		28.6	38.1
Height	H_{4}	mm	0.5								0.8
Height	H_{5}	mm	0.5							1	
Height	H_{6}	mm	3.4					3.5		3	
Angle	a_{1}		$22.5{ }^{\circ}$					15°		11.25°	
Angle	a_{2}		$8 \times 45^{\circ}$					$12 \times 30^{\circ}$		$16 \times 22.5^{\circ}$	

Dimensions | Flange Version | $\mathbf{5 0} \mathbf{~ k N} \mathbf{- 2 , 5} \mathbf{~ M N}$

Nominal force compression/tension	$\pm F_{\text {norm }}$	kN	50125	250	500	1000	1500	2000	2500
Bore	$\varnothing B_{1}$	mm	10.5	13	17.5	22	26	33	30
Bore	$\emptyset B_{2}$	mm	10H7						
Bore	$\emptyset B_{3}$	mm	10.5	17	17.5	26		33	
Bore	$\emptyset B_{4}$	mm	$10 \mathrm{H7}$	16H7					
Diameter	$\varnothing D_{1}$	mm	153.9	203.2	279	304.8	393.7	480	520.7
Diameter	θD_{2}	mm	108H8	138.9 $\mathrm{H8}$	$172.1 \mathrm{H8}$	195H8	254.4H8	$310 \mathrm{H8}$	340H8
Diameter	$\varnothing D_{3}$	mm	61.2h9	95.5n9	122.2h9	144.3n9	196.9h9	232h9	267.9h9
Pitch circle diameter	$\emptyset P_{1}$	mm	130.3 ± 0.1	165.1 ± 0.1	229 ± 0.1	241.3 $\ddagger 0.1$	322.1 ± 0.1	385 ± 0.2	419.1 ± 0.2
Pitch circle diameter	$\emptyset P_{2}$	mm	45 ± 0.1	71 ± 0.1		105 ± 0.1	150 ± 0.1	180 ± 0.2	215 ± 0.2
Thread	T_{1}		-		M12				
Height	H_{1}	mm	44.5-0.1	63.5-0.1	88.9-0.1	114.3-0.1	139.7-0.1	155-0.1	158.8-0.1
Height	H_{2}	mm	3.1	6.3	12.7	6.3	12.7	6.3	
Height	H_{3}	mm	20.5	28.6	37.9	54	63.5	74.5	
Height	H_{4}	mm	17						
Height	H_{5}	mm	0.5		1				
Height	H_{6}	mm	10	20					
Height	H_{7}	mm	-		24				

Dimensions | Flange Version | 50 kN - 2,5 MN

Nominal force compression/tension	$\pm F_{\text {norm }}$	kN	$50 \quad 125$	250500	1000	15002000	2500
Angle	a_{1}		15°	11.25°	9°	7.5°	6.43°
Angle	a_{2}		15°	11.25°	9°	7.5°	$6.43{ }^{\circ}$
Angle	a_{3}		$12 \times 30^{\circ}$	$16 \times 22.5^{\circ}$	$20 \times 18^{\circ}$	$24 \times 15^{\circ}$	$28 \times 12.86^{\circ}$
Angle	a_{4}			56.25°	63°	$52.5{ }^{\circ}$	$57.8{ }^{\circ}$
Angle	a_{5}		15°	11.25°	9°	7.5°	6.43°
Angle	a_{6}			$8 \times 45^{\circ}$		$12 \times 30^{\circ}$	$14 \times 25.71^{\circ}$

Order Numbers | Standard Variants

Force transducer Series DR | standard variants

Nominal		Description	Figure (similiar)	Order number	
Force	Signal				
Standard force transducer series DR \| threaded version					
1.25 kN	$1 \mathrm{mV} / \mathrm{V}$	Force transducer series DR $\|1.25 \mathrm{kN}\|$ threaded version		S-DR-1K25-T	
2.5 kN	$1 \mathrm{mV} / \mathrm{V}$	Force transducer series DR $\|2.5 \mathrm{kN}\|$ threaded version		S-DR-2K50-T	
5 kN	$1 \mathrm{mV} / \mathrm{V}$	Force transducer series DR $\|5 \mathrm{kN}\|$ threaded version		S-DR-5K00-T	
12.5 kN	$2 \mathrm{mV} / \mathrm{V}$	Force transducer series DR $\|12.5 \mathrm{kN}\|$ threaded version		S-DR-12K5-T	
25 kN	$2 \mathrm{mV} / \mathrm{V}$	Force transducer series DR \| 25 kN	threaded version		S-DR-25K0-T
50 kN	$2 \mathrm{mV} / \mathrm{V}$	Force transducer series DR \| 50 kN	threaded version		S-DR-50K0-T
125 kN	$2 \mathrm{mV} / \mathrm{V}$	Force transducer series DR $\|125 \mathrm{kN}\|$ threaded version		S-DR-125K-T	
250 kN	$2 \mathrm{mV} / \mathrm{V}$	Force transducer series DR \| $250 \mathrm{kN} \mid$ threaded version		S-DR-250K-T	
500 kN	$2 \mathrm{mV} / \mathrm{V}$	Force transducer series DR \| 500 kN	threaded version		S-DR-500K-T
Standard force transducer series DR \| flange version					
50 kN	$2 \mathrm{mV} / \mathrm{V}$	Force transducer series DR \| 50 kN	flange version		S-DR-50K0-F
125 kN	$2 \mathrm{mV} / \mathrm{V}$	Force transducer series DR \| 125 kN	flange version		S-DR-125K-F
250 kN	$2 \mathrm{mV} / \mathrm{V}$	Force transducer series DR \| 250 kN	flange version		S-DR-250K-F
500 kN	$2 \mathrm{mV} / \mathrm{V}$	Force transducer series DR \| 500 kN	flange version		S-DR-500K-F

[^0]
Order Numbers | Configurable Variants

Force transducer Series DR | configurable variants

Item	Code	Description
Force Transducer Series DR	C-DR	Configurable force transducer series DR
Nominal Force	1K25	1.25 kN
	2K50	2.5 kN
	5K00	5 kN
	12K5	12.5 kN
	15K0	15 kN
	25K0	25 kN
	50K0	50 kN
	100K	100 kN
	125K	125 kN
	250K	250 kN
	500K	500 kN
	1M00	1 MN
	1M50	1.5 MN
	2M00	2 MN
	2M50	2.5 MN
Mechanical design	F	Flange
	T	Thread
Mounting	M	Metric
	F	Flange
Mounting adapter	N	No mounting parts
	Y	With mounting parts
Plug protection	N	No plug protection
Nominal sensitivity	2.0	$2 \mathrm{mV} / \mathrm{V}$
	1.0	$1 \mathrm{mV} / \mathrm{V}$
Single or double measuring bridge	SB	Single bridge
	DB	Double bridge
Bending moment measuring circuits Mx, My	NO	No bending moment measuring circuits Mx, My
Accelerometers	NO	No accelerometers
	AC	With 2 integrated accelerometers
Temperature range	S	Standard temperatur range $\mid+10^{\circ} \mathrm{C}-+45^{\circ} \mathrm{C}$
Electrical transducer connection (for all selected measuring circuits)	P	Bayonet connector socket(s) \| 6-pole
Cable connection type (for all selected measuring circuits)	P	Bayonette connector(s) on all selected measuring circuits \| no permanently mounted measuring cable(s)

Order-Example

C-D R	125K	T	M	Y	N	2	SB	NO	A C		S	-	P		P
	125 kN	Threaded version	M etric	with bottom plate	no plug protection	$\begin{array}{\|l} \hline 2 \\ \mathrm{mV} / \mathrm{l} \\ \mathrm{~V} \\ \hline \end{array}$	single bridge	No bending moment circuits Mx, My	with 2 integrated accelerometers		standard temperatur e range		Bayonet socket(s)		Bayonet socket(s)

Order Numbers | Configurable Variants | Glossary

Item	Description
Mechanical design	The series DR force transducer has different mechanical interfaces depending on the nominal load. $\begin{aligned} & \mathrm{F}=\text { flange version \| nominal load: } 50 \mathrm{kN}-2.5 \mathrm{MN} \\ & \mathrm{~T}=\text { Threaded version } \mid \text { Nominal load: } 1.25 \mathrm{kN}-1.25 \mathrm{MN} \end{aligned}$
Mounting	The DR series force transducer can be equipped and fitted in the threaded version with both metric and inch threads. Both variants are identical in construction. UNF threads are available on request and in selected nominal loads. Flange version $\mathrm{F}=$ Flange mounting Threaded version M = Metric \mid Standard UNF thread on request and in selected nominal loads.
Mounting adapter	Depending on the nominal load, the force transducer series DR-T (threaded version) can be equipped with additional attachments. The attachments are all pre-assembled at the factory. - Nominal load: 1.25-2.5 kN with base plate (aluminium) M16\|mounted - Nominal load: 12.5-25 kN with base plate M16 (steel) \| mounted - Nominal load: 50 kN with base plate M16 (steel) \| mounted - Nominal load: 125 kN with base plate M33×2 (steel) \| mounted - Nominal load: 250 kN with base plate M42×2 (steel) \| mounted - Nominal load: 500 kN with base plate M72×2 (steel) \| mounted
Plug protection	In special cases it may be necessary to additionally equip the electrical connections on the force transducer series DR with a protective profile around the plug connection. Dimensions depending on nominal load and on request.
Nominal sensitivity	The DR series force transducer has the following nominal sensitivity depending on the nominal force. The permissible oscillation stress of $\pm 100 \%$ applies to all nominal forces. $\begin{aligned} & 1 \mathrm{mV} / \mathrm{V}=1.25-5 \mathrm{kN} \\ & 2 \mathrm{mV} / \mathrm{V}=>5 \mathrm{kN} \end{aligned}$
Single or double measuring bridge	For redundancy reasons, it is necessary, for example in safety-relevant applications, to check the safetyrelevant integrity of the measuring signal by means of a second measuring bridge (functional redundancy in the same force transducer). Two force transducer output signals are processed and evaluated independently of each other via two separate measuring amplifier channels. This makes it possible to connect two measuring amplifiers with different characteristics (DC / TF). The second redundant measuring circuit, is characterised by no crosstalk between the channels at different carrier frequencies. Notes: The selection of a double measuring bridge affects the number of connection sockets. The double measuring bridge can be selected from 2.5 kN (also applies to the combination with optional acceleration sensors).
Bending moment measuring circuits $\mathbf{M x}, \mathbf{M y}$	The Series DR force transducer can be equipped with bending moment measuring circuits on request. The additional bending moment measuring circuits can be measured to control the horizontal bending moments Mx and My and can be provided as separate channels. Notes: The selection of bending moment measuring circuits affects the number of connection sockets. The bending moment circuits can only be selected in combination with a single or double measuring bridge. A combination with accelerometers on request.
MEMS accelerometers	The Series DR force transducer can optionally be equipped with two integrated MEMS accelerometers. In this way, for example, the resulting inertial forces of the force measurement setup or the test stand setup can be determined easily and effectively during dynamic measurements.
Temperature range	$\mathrm{S}=$ Standard temperature range $-10^{\circ} \mathrm{C}-+45^{\circ} \mathrm{C}$

Note: Continued on next page

Order Numbers | Configurable Variants | Glossary

Item	Description
Electrical	The DR series force transducer can be configured with fixed bayonet connection sockets. The number of
connection	connection sockets results from the number of selected measuring bridges. $\mathrm{P}=$ Bayonet connection socket(s) $\mid 6$-pole
Note: Fixed measuring cables on request.	
Cable connection type	With pluggable Bayonet connection, no additional cable connection type is available. P = Bayonet connection socket(s) selected \mid no permanently mounted test lead(s). Note: Further options with measuring cables on request.

Order-Example

Order Numbers | Accessories

Description	Order number			
Measuring cable				
Standard measuring cable \|grey $\|5 \mathrm{~m}\|$ shielded and twisted in pairs\| outer sheath $\varnothing 6.5$ mm \| 6-wire technology	transducer connection: Bayonet connector type MIL-C-26482 S	6-pole	Cable end amplifier: open	S-CAB-SMC-B-5M-F
Configurable measuring cable type SMC, DMC, TMC, FMC \| in different lengths	with different connectors for amplifier connection	C-CAB-xxx-BA6S-xxx-xxxx		
Series DR \| bottom plate for threaded version (1 piece)				
Serie DR \| 1.25-5 kN	bottom plate	S-MA-DR-BP-01		
Serie DR \| $12.5-25 \mathrm{kN}$ \| bottom plate Sr	S-MA-DR-BP-02			
Serie DR \| 50 kN	bottom plate	S-MA-DR-BP-03		
Serie DR \| 125 kN	bottom plate	S-MA-DR-BP-04		
Serie DR \| 250 kN	bottom plate	S-MA-DR-BP-05		
Serie DR \| 500 kN	bottom plate	S-MA-DR-BP-06		
Notes: 1.25-5 kN \|material: aluminium > 12.5 kN \| material: steel				
Series DR \| bolt set outer hole circle for threaded version (1 set)				
Serie DR \| $1.25-5 \mathrm{kN}$ \| bolt set outer hole circle $\mid 8 \mathrm{pcs}$.	S-MA-DR-BO-01			
Serie DR \| $12.5-25 \mathrm{kN} \mid$ bolt set outer hole circle $\mid 8$ pcs.	S-MA-DR-BO-02			
Serie DR \| 50-125 kN	bolt set outer hole circle 12 pcs .	S-MA-DR-BO-03		
Serie DR \| 250 kN	bolt set outer hole circle ${ }^{\text {a }} 12$ pcs.	S-MA-DR-BO-04		
Serie DR \| 500 kN	bolt set outer hole circle ${ }^{\text {l }} 16$ pcs.	S-MA-DR-BO-05		
Note: 1 set for mounting the bottom plate via outer hole circle threaded version				

Configurable force transducer series DR

Single measuring bridge |MEMS accelerometers $\mid 2 x$ bayonet connection | threaded version | bottom plate pre-assembled

[^0]: Note: all standard variants always (1) with metric thread (2) without mounting parts (3) no plug protection (4) single measuring bridge (5) no integrated accelerometers (6) standard temperature range (7) $1 x$ bayo net connection socket 6-pin | no measuring cables included

